
-39-

A NEW MODULA COMPILER FOR THE LSi-Ii

Ahmed PIahjoub
Philips Laboratories

345 Scarborough Road,
Briarcli~ Manor, NY 10510

Abstract

This note contains a brief description oS a new Moduia
compiler developed at Philips Laboratories. The compiler
generates code Pot the LSI-II microprocessor. It is written.in
Pascal and operates under control oP the U.C.S.D. system.
Philips Laboratories Modula (PL Moduia) di?~ers slightly Srom
original Modula as defined by Wirth. These di?~erences are
outlined in section 3.

i. Introduction

PL Modula is a slightly changed and extended version o~ the
language Module de?ined bg N. Wirth [1,2,3]. The most notable
changes end/or extensions are: a priority mechanism eor regular
processes, structured constants and v a r i a n t records.

As part o~ the ongoing higher level language activities at
Phi!ips Laboratories a two-pass compiler ~or PL Modula has been
developed. The compiler is currently operational, and runs on
the TERAK personal computer (LSl-ll-based with 64k bytes
o~ RAM).

To enhance the portability o~ the eo~tware developed in PL
Modulo, an intermediate language (P-code) is used. The compiler
consists o~ two distinct parts: A translator that accepts PL
Modulo source programs and produces equivalent P-code programs,
and a code generator that accepts a P-code programs and produces
stand alone load modules.

2. Modula

Modula is a Pascal-based structured language that supports
concurrent programming. Modula has two o~ the principal features
o~ Pascal" strong typing and user defined types. Its main
structuring tools ere the process and the module. A process
consists o~ private and shared data and is expected to execute
concurrently with other processes. A module is a collection o.F
objects .(e.g. variables, procedures, types, etc...) which are
local to the module, but which persist throughout invocations o~
its procedures. The main purpose oS the module strucuture is to
hide the data it contains and provide explicit control on

Editor's Note: The compiler is intended for non-colmercial use, and can be made
available under license agreement to university research facilities for research
purposes at $150.00 per copy. For more information, write to: Modula Project,
Computer Systems Research Group, at the address on top of this page.

-40-

outside access to that data.

In addition to megular modules, Modula has two othe~ kinds
o~ Modules: InterSace Modules, which are verg similar to
monitors in that theg are used ?or communication and
sgnchronization uS processes, and device modules, which are
interface modules that can contain machine dependent code. These
modules are purposelg designed SoT implementing device drivers
and I/0 routines.

One uS the principal aims in the design of Modula is to be
~ble to run prog1-~ms on a bare machine with minimal run-time
support. Current implementations have shown that this is indeed
possible and the size o~ the ke:-nel has been reported as 100-
!50 words [2,4]. This makes Modui~ programs execute e~icientlg
and makes the language especiallg suited .Fol- real-time
applications and low level device handling.

3. Some diSSerences with the original deSinition

The most signiSicant extension we made to Modula is the
deSinition o-G a uniform prioritg mechanism. We allow regular
processes to have non-zero priorities, but restrict these
priorities to be lower than those uS device processes. We also
allow device p1~ocesses to wait on signals emitted bg other.
device processes. The implications o~ this extension with regard
to the language implementation are as Sollows:

I) The ring implementation specified in [2] is no longer
valid. Instead a prioritg queue is used. All ready processes are
linked into a ready ~ueue and scheduled on a priority basis.
Context switching occurs according to the Sollowing rule: Let P1
and P2 be two (regular or device) processes having priorities i
and j respectivelg. Assume P1 sends a signal awaited by P2, then

i>j The sending process continues. The waiting process is
appropriatelg inserted in the readg ~ueue. There is
no context switch.

i<j The sending process releases the processor and is
appropriatelg inserted in the readg ~ueue. The signalled
process moves to the head o~ the ~ueue and receives
control o? the processor. In this case there is a context
switch.

i=j IS the sending process is a device process then case
i}-j is adopted else case i<Zj is adopted. This is
consistent with Wirth's goal uS minimizing context switches
inside device modules so that devices can run mere
eSeicientlg.

-41-

A context switch mag also occur when a regular process
exits ~ device or inter?ace module.

When a device process executes a doio, it is removed ?tom
the readg queue and another readg process is selected ?or
execution. An interrupt ?tom a device causes preemption o? the
executing process and resumption o? that device's driver (a?ter
being placed at the head o? the readg ~ueue).

2) Mutu~l exclusion around inter~ace modules is no longer
~ree, A prioritg ~ueue is associated with each interface (but
not device) module and contains an entrg Sot each process
waiting to enter that module. This was not needed in the
original implementation because an interrupted process Pi alwags
receives control oS the processor immediatelg ~ter it is
released bg the interrupting process P2~ this is not however the
case here since P2 could send a signal to another process P3
whose current prioritg is higher than that o'~ P1 therebg giving
P3 control oS the processor. Note however that device modules do
not need ~ng mutual exclusion. This is due to the eollowing
rules:
i) when a regular process enters a device module~ its prioritg
is raised to the prioritg o~ that module [I].
2) When the processor is at prioritg level i, all interrupts oe
prioritg less or equal to i are masked oSe [I].
3) when a regular process exits a device module, its prioritg
drops to its origin~l value, andthe process at the head o~ the
readg ~ueue is given control o~ the processor. This mag result

in ~ context switch.

]'he rationale oS the above extension is oriented towards
solvinn the ?of!owing problems"

Process Starvation

In the original implementation process starvation can be
caused in tuJo wags: a) A process "runs aw~g" with the processor.
b) A process sends a signal to its predecessor in the ring which
executes some code and drops into a wait. And this is repeated

inde~initelg.

in our implementation the Sirst situation is in general
not possible since the processor is not necessarilg returned to
the interrupted process immediatelg aster it is released bg the
interrupting process. The second situation is due to the wag
processes are scheduled oS~ the ring and is not possible here
since we have a prioritg scheduling. It is however possible that
a low prioritg process is starved iS it is indeSinitelg
overtaken bg higher prioritg processes.

Restrictions on device processes jl

-42-

Wirth's implementation has a peculiar restriction on
signals emitted bg device processes: theg cannot be received bg
other device processes. In previous examples (e.g. card reader
to line printer stream [3]) this restl-iction was overcome bg the
insertion uS a regular process between the sender and the
receiver. Although this process' ?unction is trlvial and its
code is verg shuT't, the solution is nevertheless non-intuitive
and incurs some overhead in context switching.

I? device processes were allowed to exchange signals then
software administration uS process descriptors would be needed.
In Wirth's implementation, however, device processes are
scheduled entirelg bg the hardware. This is a verg efficient wag
o~ handling device processes. The prioritg mechanism described
above allows device processes to exchange signals at the cost o?
linking and deiinking their descriptors ~rom the readg queue.

Supervisorg Processes

One uS the shortcomings o{ Moduia is that supervisorg
processes, that is processes that schedule the execution of
other processes, cannot be programmed. In ?act Wirth"s
imp I eme-~-~ ~ _ ,,~_~on pi~ecludes a device process ?rum interrupting a
regular process and giving the processor to another regular
process. This is due to the ?act that the language lacks ang
forceful means to switch the processor ~rom one regular process
to another. The motivation ?or this is to do awag with mutual
exclusion.

in our implementation we have sacrificed free mutual
exclusion around interface modules Sot a better control on
processor allocation. Although this does not solve completelg
the problem mentioned above (for a more complete solution see
[6]), it enables the user to descriminate among regular
processes through the use og priroties. Further, as indicated in
[5], it makes the estimation o~ the execution time of programs
more manageable.

Our prioritg scheme has two shortcomings"

Axiom o~ the wait primitive

Wirth pointed out in [5] that " . . . if a process would not
immediatelg be resumed aster signal 1"eceipt, no guarantee could
be given for the condition Ps [associated with the signal s]
still to hold when at a later time the waiting process obtains
the processor ... ". Our scheme does not guarantee the axioms
governing signals sent bg regular or device processes. In
Wirth's implementation this is onlg a problem when the signal is
emitted bg a device process. Wirth gives in [5] two additional
constraints that solve this problem. We found these
~-estrictions to be too strong. In [7] Wirth mentions a simple

-43-

solution which consists o£ implementing wait(s) as"

repeat wait(s) until Ps

where s is the signal being sent, and Ps is its associeted
condition.

Larger Kernel

The implementation oS m u t u a l exclusion around inter£ace
modules has cost us some (not too signi£icant) increase in the
size o~ the kernel. Currentlg it is approxims'telg 250 words.

Other changes and extensions are

- A device process mag speci£g a r a n k in its w a i t statement
- There is no lexical nesting o~ interSace modules.

The implications o£ this construct in the original
de£inition were unclear.

- Records mau have variant parts (to bgpass strong tgping).
- Structured constants can be defined.
- A CASE statement mag contain an OTHERWISE clau~e.
- Some standard procedures Sot run-time debugging have been

added.

4. Run-time debugging

Two standard procedures called TRACE and OU'FTRACE are
provided to enable the programmer to examine the values o{
certain variables and the status o~ signal queues. These
procedures are part o£ the kernel, and can be invoked angwhere
~rom a program. Optionallg, the compiler can per£orm arrag index
checking and comparison o£ records. Other run-time checks are:

- predecessor and successor o~ an enumeration value exists.
- argument o? CHR is within range.
- In an arrag assignment, the index range o? the source

equals that o£ the destination.

5. P e r f o r m a n c e

The speed oS the ~irst phase (i. e. source to P-code
translation) is roughlg 180 lines per minute. The 2nd phase
(i. e. code generation) is slow, (approximatelg hal£ the speed o£
the £irst phase) and e~£orts are undertaken to improve its
speed. In an experimental attempt to determine the speed o~ the
entire compiler, we timed the compilation o.F a 578 line program.
The translation phase took 3.09 minutes, while the code
generation phase took 5.03 minutes. This corresponds to an
overall speed o£ about 73 lines per minute. It must be pointed
out that an important Sac tor in the slowness oS the compiler is
that UCSD Pascal is interpreted, It runs about six times slower

-44-

than optimal.

The execution speed oS PL Module programs is quite
remsonable. We estimate that the compiler produces code which~
on average, is u~ithin a Sector o~ 3 times slower than optim~l~
Code Sot variable assignment ~nd evaluation o~ arithmetic
expressions is verg nearlg optimal.

The overhead associated with the sgnchro~ization operations
is as ~oiiows~

WAIT 153 microseconds
SEND 169 microseconds (* signal emitted to a process o~ 2"=

prioritu *)
DOiO 41 microseconds

6. Conclusion

Developing a Module compiler on a personal computer has
been a valuable experience ~or us~ We learned a great deal on
how to cope with memorg limitations. We also Sound out that
Wirth was verg clever in the compromises he made in his
implementation oe the Module kernel. It was verg diSeicult to
relax some o'~ the restrictions he had without paging a price ~or
them. We beleive that our extensions are worth the price we
paged ~or them.

7. Acknowledgements

A number o~ people have contributed to various aspects o,~
the PL Module project. We wish to acknowledge the ?ollowing
people ~or their contribution to the project: Frans Hegmans,
Charles Hill, Dan Lorenzini, Paul Rutter, Karen Schroeder, Kees
Smedema and Jerrg Sullivan.

REFERENCES

i . N. Wirth, "Modula: a Language ~or Modular Multiprogramming"
SP&E, Vol 7, 3-35 (1977)

2. N. Wirth, "Design and Implementation oS Module", SP&E,
Vol 7, 67-84 (1977)

3. N. Wirth, "The use o? Module", SP&E, Vol 7, 37-65 (1977)

4. J. Holden and I.C. Wand, "Experience with the Programming
Language Module" Proceedings 1977 IFAC/IFIP Real Time
Programming Workshop, Pergamon 1978

-45-

5. N. Wire.h, Towards a Discipline #or Real-time programming",
CACM ~ 0 , 8

6. I.C. Wand, "Dgnamic Resource Allocation and Supervision with
the Programming Language Modula", Universitg o~ York Computer
Science Tech. Rep. No 15, Aug 1978

7. N. Wirth, private communication

