-39~
A NEW HODULA COMPILER FOR THE LSI-i1

Ahmed Mah joub
Philips Laboratories
345 Brarhoerough Road,
Eriarcliff Manor, NY 10510

Abstract

This note contains a brief description of a new Modula
compiler developsd at Fhilipe Laboratories. The compiler
genarates code Ffor the LEI~-11 microeprocessor. It is written in
Pascal and operates under control of the U. C. 8. D. system.
Philips Laboratories Modula (PL Modula) differs slightly from
original Modula as defined by Wirth. These differences are
gutlined in section 3.

1. Introduction

PL Modula is s slightly changed and sxtended version of the
language Modula defined by N. Wirth [1,2,33. The most notable
changes and/sor sxtensions are: a priority mechanism for regular
nrocesses, structured constants and variant records.

As part of the ongoing higher level language activities at
Philips Laboratories & two—-pass compiler for FPL Modula has been
developed. The compiler is currently operational, and runs on
the TERAK personal computer (LSI-li-based with &4k bytes
gf RAM).

To enhance the portability of the software developed in PL
Modula, an intermediate language (P-code) is used. The compiler
consists of two distinct parts: A translator thet accepts PL
Modula source programs and produces equivalent P-—-code programs,
and a code generator that accepts @& P-code progvrams and produces
stand alone load modules.

2. Modulas

Modula is & Pascal—-based structurad langusge that supports
concurrent programming. Modula has two of the principal features
of Pascal: ztrong tuping and user defined types. Its main
structuring tools are the process and the module. A process
consists of private and shared data and is expected to execute
concurrently with ather processes. A module is a collection of
objects {g.q. variables, procedures, ftypes, etc. ..) which are
local to the moduie, but which persist throughout invocations of
its procedures. The main purpose of the module strucuture is to
hide the data it contains and provide explicit control on

Editor's Note: The compiler is intended for non-commercial use, and can be made
available under license agreement to university research facilities for research
purposes at $150.00 per copy. For more information, write to: Modula Project,
Computer Systems Research Group, at the address on top of this page.

40~

cutside access to that data.

In addition to regular modules, Moduls has two other kinds
of Modulezs: Intevrface Modules, which are very similar to
monitors in that they ars wsed For communigcation and
synchronization of processes, and device modules, which are
interface modules that cen contain machine dependent code. These
modules are purpousely designed for implementing device drivers
and I/0 routines.

One of the principal aims in the design of Modula is to be
able to Tun programs on & bare machine with minimal ron—-time
sunport. Current implementations have shown that this 1s indeed
possible and the size of the kevnel has been veported as 100-
150 words [2,41. This makes Modula programs execute efficiently
and makes the language especially suited for real-time

applications and low level device handling.
3. Some differences with the original definition

The most significant extension we made to Modula is the
dafinition of a uniform priority mechanism. We allow vegular
processes to have non—zero prioritiss, but restrict these
priorities to be lower than those of device processes. We also
allow device processes to wait on signals emitted by other
device processes. The implications of this ertension with regard
to the language implementation are as follows:

1) The ring implementation specifisd in [21 15 no longer
valid., Instead a priority queus is used. All resdy processes are
linked into a ready gqueus and scheduled on a priority bhasis.
Context switching occurs according to the following rule: Let P
and P2 be two {(regular ar device) processes having priorities i
and § respectively. Assume Pl sends a signal aswsited by P2, then

i*y) The sending process continues. The waiting process is
appropriately inserted in the veady gueue. There is
no context switch.

i<y The sending process relesses the processor and is
appropriately inserted in the resdy queuve. The signalled
process moves to the head of the queue and receives
control of the processor. In this case there 13 a context
switch.

i=3 If the sending process is a device process then case
1>y is adopted else case i<y is adopted. This is
consistent with Wirth’s goal of minimizing context switches
ineide device modules so that devices can run more
efficiently.

41~

A context switch may alse occur when a ragular process
gxits a device or interface module

When a device process executes a doio, it is removed from
the ready queue and ancther ready precess is selected for
execution. An interrupt from a device cauvces preemption of the
executing process and rvesumpition of that device‘s driver (after
being piaced at the head of the ready queuve)

2) Mutual exclusion around interface modules is noe longer
free., A pricrity gueue is associated with each interface (but
not device) module and contains an entry for sach process
waiting to enter that module. This was not needed in the
asriginal implementation becasuse an interrupted process Pl aluways
receives control of the processor immediately after it is
released by the interrupting process P2; this is not however the
case here since P2 could send 3 signal to ancther process P3
whose current priority is higher than that of Pl thereby giving
P3 control of the processor. Note however that device modules do
not need any mutual exclusion. This is due to the following

[
ot
W
i

T
1} when a regular process enters a device module:, its priority
is raised to thne priority of that module L[11].

2) When the processor is at priority level i, all interrupts of
priority less or equal to i are masked off C11.

3) when a regular process exits a device module, its priority
drops to its original value, and the process at the head of the
ready queue is given control of the processor. This may result
in & context switch.

The Tationals of the above sxtension is oriented towards
zolving the following problems:

Process Starvation

In the original implementation process starvation can be
caused in two ways: a) A process “runs away” with the processor.
b) A process sends a signal to its predecessor in the ring which
executes some code and drops inte a wait. And this is repeated
indefinitely.

In our implementation the first situation is in general
not possible since the processor 1S not necessarily returned to
the interrupted process immediately after it is released by the
interrupting process. The second sitvation is due to the way
processes are scheduled off the rTing and is naot possible here
since we have a priority scheduling. It is however possible that
a low priority process is starved if it is ‘indefinitely '
overtaken by higher priorifty processes.

Restrictions on device processes

42—

Witth's implementation has a peculiar restriction on
signals emitted by device processes: they cannot be rTeceived by
other device processes. In previous examples (. g. card rveader
to line printer stream [31) this restriction was overcome by the
insertion of a regular process between the sender and the
receiver. Although this process’ function is trivial and its
code is very short, the solution is nevertheless non-intuitive
and incurs some overhead in context switching.

1+ device processes were allowed to exchange signels then
software administration of process descriptors would be needed.
In Wirth’s implementation, however, device processes are
scheduled entirely by the hardware This is a very efficient way
of handling device procssses. The priority mechanism described
above allows device processes to exchange signals at the cost of
linking and delinking their descriptors from the resdy queue

Supervisory Processes

One of the shortcomings of Medula is that supervisory
iz processes that schedule the execution of

processes, cannot be programmed. In fact Wirth's
ementation precludes a device process from interrupting a

»gular process and giving the processor to ancther regular
process. This is due to the fact that the language lacks any
ferceful means to switch the processor from one vegular process
to another. The motivation for this is to do away with mutual
exclusion.

Iin our implementation we have sacrificed free mutual
exclugion around interface modules for a hetter caoantrol on
processor allocetion., Although this does not solve completely
the problem mentioned above (for a more complete solution see
[43), it enables the user to descriminate among regular
processes through the use of privoties. Fourther, as indicated in
£33, it makes the estimation of the exscution time of programs
more manageable.

{ur priority scheme has two shortcomings:
Axiom of the wait primitive

Wirth pointed out in £33 that ". .. 1if a process would not
immadiately be resumed after signal receipt, no guarantee could
be given for the condition Ps [associated with the signal sl
stiil to hold when at a later time the waiting process obtains
the processor ...". Our scheme does not guarantee the axioms
governing signals sent by regular or device processes. In
Wirth’s implementation this is only a problem when the signal is
emitted by a device process. Wirth gives in {51 two additional
constraints that solve this problem. We found these
‘“estrictions to be too strong. In (71 Wirth mentions a simple

43—

solution which copnsists of implementing wait(s) as:
repeat wait{s) until Ps

where s is the signal being sent, and Ps is its associated
condition.

Larger Kernel

The implementation of mutual exclusion around interface
modules has cost us some (noft too significant) increase in the
size of the karnel. Currently it is approximately 230 words.

{ther changes and extensions are:

- & device process may specify a rank in its wait statement

- There is no lexical nesting of interfacs modules.
The implications of this construct in the original
definition were unclear.

-~ Records may have variant parts (to bypass strong typing)?.

- Structured constanits can be defined.

- A CASE statement may contain an OTHERUWISE clause

— Some standard procedures for run—time dzbugging have been
added.

4. Run—~time debugging

Two standard procedures called TRACE and OUTTRACE are
provided to enable the programmer to examine the values of
certain variables and the status of signal queves. These
procedures are part of the kernel, and can be invoked anyuwhere
from a program. Optionally, the compiler can perform array index
checking and comparison of records. Other run—time checks are:

— predecessor and successor of an enumeration value exists.

-~ argument of CHR is within rTange

—~ In an array assignment, the index range of the source
equals that of the destination.

5. Performance

The spead of the first phase (i.e. source to P-code
translation? is voughly 180 lines per minute The =nd phase
{i.e. code generation) is slow, f{approximately half the speed of
the firs% phase) and efforts are undertaken to improve its
spead. In an experimental attempt to determine the speed of the
entire compiler. we timed the compilation of a 578 line program.
The translation phase took 3.0% minutes, while the code
generation phase took 5. .03 minutes. This corresponds to an
overall speed of about 73 lines per minute. It must be pQ1nzeq
out that an important factor in the slowness of ?he ;ompller is
that UCSD Pascal ie interpreted, It runs about six times slower

lyly

than optimal.

The execution speed of PL Modula programs 1s guite
reasonable. We s2stimate that the compiler produces code which,
an average, 1is within a8 factor of 3 times slower than optimal.
Code for variable assignment and evasluation of arithmetic
expressions 1s very nearly optimal.

The overhead associated with ths synchronization operations
is as follows:

WAIT 153 microsszconds

SEND 1469 microseconds (¥ signal emitted to & process of o=
priority %)

BOIT 41 microseconds '

4. Conclusion

Developing a Modula compiler on a persaenal computer has
been a valuable experience for us. We learned a great deal on
how to cope with memory limitations. We alse found out that
Wirth was very clever in the compromises he made in his
implementation of the Modula kernel. It was very difficult %o
Telax some of the restrictions he had without paying & price for
them. We beleive that our extensions are worth the price we
payed for them.

7. Acknowledgements

A number of peoaple have contributed to various aspects of
the PL Modula project. We wish to acknowledge the following
people for their contribution to the progect: Frans Heymans,
Charles Hill, Dan Lorenzini, Paul Rutter. Karen Schroeder, Kees
Smedema and Jerry Sullivan.

REFERENCES

1. N Wirth, "Modula: a Language for Modular Multiprogramming'
SPYRE, Yol 7, 3-33% (1977)

M. Wirth, “D2sign and Implementation of Modula", SPLE,

Val 7, &7-84 (1977)

n

3. M. Wirth, "The vuse of Modula", SPLE, Vol 7, 37-60 (19727)

4. J. Holden and I.C. Wand, "Experience with the Programming
Language Modula” Proceedings 1977 IFAC/IFIP Real Time
Programming Wovrkshop., Pergamon 1978

45

5 N, Wirth, "Towards a Discipline for Real-time programming”.

CacM 20.8

the Programming Languasge Modula®
Science Tech. Rep. No 15, Aug 19

~}

N. Wirth, privatese ctommunication

g~

8

4. I.C. Wand, "Dynamic Resource Allecation and Supervision with

University of York Computer

