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Abstract 

This note contains a brief description oS a new Moduia 
compiler developed at Philips Laboratories. The compiler 
generates code Pot the LSI-II microprocessor. It is written.in 
Pascal and operates under control oP the U.C.S.D. system. 
Philips Laboratories Modula (PL Moduia) di?~ers slightly Srom 
original Modula as defined by Wirth. These di?~erences are 
outlined in section 3. 

i. Introduction 

PL Modula is a slightly changed and extended version o~ the 
language Module de?ined bg N. Wirth [1,2,3]. The most notable 
changes end/or extensions are: a priority mechanism eor regular 
processes, structured constants and v a r i a n t  records. 

As part o~ the ongoing higher level language activities at 
Phi!ips Laboratories a two-pass compiler ~or PL Modula has been 
developed. The compiler is currently operational, and runs on 
the TERAK personal computer (LSl-ll-based with 64k bytes 
o~ RAM). 

To enhance the portability o~ the eo~tware developed in PL 
Modulo, an intermediate language (P-code) is used. The compiler 
consists o~ two distinct parts: A translator that accepts PL 
Modulo source programs and produces equivalent P-code programs, 
and a code generator that accepts a P-code programs and produces 
stand alone load modules. 

2. Modula 

Modula is a Pascal-based structured language that supports 
concurrent programming. Modula has two o~ the principal features 
o~ Pascal" strong typing and user defined types. Its main 
structuring tools ere the process and the module. A process 
consists o~ private and shared data and is expected to execute 
concurrently with other processes. A module is a collection o.F 
objects .(e.g. variables, procedures, types, etc... ) which are 
local to the module, but which persist throughout invocations o~ 
its procedures. The main purpose oS the module strucuture is to 
hide the data it contains and provide explicit control on 
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outside access to that data. 

In addition to megular modules, Modula has two othe~ kinds 
o~ Modules: InterSace Modules, which are verg similar to 
monitors in that theg are used ?or communication and 
sgnchronization uS processes, and device modules, which are 
interface modules that can contain machine dependent code. These 
modules are purposelg designed SoT implementing device drivers 
and I/0 routines. 

One uS the principal aims in the design of Modula is to be 
~ble to run prog1-~ms on a bare machine with minimal run-time 
support. Current implementations have shown that this is indeed 
possible and the size o~ the ke:-nel has been reported as 100- 
!50 words [2,4]. This makes Modui~ programs execute e~icientlg 
and makes the language especiallg suited .Fol- real-time 
applications and low level device handling. 

3. Some diSSerences with the original deSinition 

The most signiSicant extension we made to Modula is the 
deSinition o-G a uniform prioritg mechanism. We allow regular 
processes to have non-zero priorities, but restrict these 
priorities to be lower than those uS device processes. We also 
allow device p1~ocesses to wait on signals emitted bg other. 
device processes. The implications o~ this extension with regard 
to the language implementation are as Sollows: 

I) The ring implementation specified in [2] is no longer 
valid. Instead a prioritg queue is used. All ready processes are 
linked into a ready ~ueue and scheduled on a priority basis. 
Context switching occurs according to the Sollowing rule: Let P1 
and P2 be two (regular or device) processes having priorities i 
and j respectivelg. Assume P1 sends a signal awaited by P2, then 

i>j The sending process continues. The waiting process is 
appropriatelg inserted in the readg ~ueue. There is 
no context switch. 

i<j The sending process releases the processor and is 
appropriatelg inserted in the readg ~ueue. The signalled 
process moves to the head o~ the ~ueue and receives 
control o? the processor. In this case there is a context 
switch. 

i=j IS the sending process is a device process then case 
i}-j is adopted else case i<Zj is adopted. This is 
consistent with Wirth's goal uS minimizing context switches 
inside device modules so that devices can run mere 
eSeicientlg. 
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A context switch mag also occur when a regular process 
exits ~ device or inter?ace module. 

When a device process executes a doio, it is removed ?tom 
the readg queue and another readg process is selected ?or 
execution. An interrupt ?tom a device causes preemption o? the 
executing process and resumption o? that device's driver (a?ter 
being placed at the head o? the readg ~ueue). 

2) Mutu~l exclusion around inter~ace modules is no longer 
~ree, A prioritg ~ueue is associated with each interface (but 
not device) module and contains an entrg Sot each process 
waiting to enter that module. This was not needed in the 
original implementation because an interrupted process Pi alwags 
receives control oS the processor immediatelg ~ter it is 
released bg the interrupting process P2~ this is not however the 
case here since P2 could send a signal to another process P3 
whose current prioritg is higher than that o'~ P1 therebg giving 
P3 control oS the processor. Note however that device modules do 
not need ~ng mutual exclusion. This is due to the eollowing 
rules: 
i) when a regular process enters a device module~ its prioritg 
is raised to the prioritg o~ that module [I]. 
2) When the processor is at prioritg level i, all interrupts oe 
prioritg less or equal to i are masked oSe [I]. 
3) when a regular process exits a device module, its prioritg 
drops to its origin~l value, andthe process at the head o~ the 
readg ~ueue is given control o~ the processor. This mag result 

in ~ context switch. 

]'he rationale oS the above extension is oriented towards 
solvinn the ?of!owing problems" 

Process Starvation 

In the original implementation process starvation can be 
caused in tuJo wags: a) A process "runs aw~g" with the processor. 
b) A process sends a signal to its predecessor in the ring which 
executes some code and drops into a wait. And this is repeated 

inde~initelg. 

in our implementation the Sirst situation is in general 
not possible since the processor is not necessarilg returned to 
the interrupted process immediatelg aster it is released bg the 
interrupting process. The second situation is due to the wag 
processes are scheduled oS~ the ring and is not possible here 
since we have a prioritg scheduling. It is however possible that 
a low prioritg process is starved iS it is indeSinitelg 
overtaken bg higher prioritg processes. 

Restrictions on device processes jl 
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Wirth's implementation has a peculiar restriction on 
signals emitted bg device processes: theg cannot be received bg 
other device processes. In previous examples (e.g. card reader 
to line printer stream [3]) this restl-iction was overcome bg the 
insertion uS a regular process between the sender and the 
receiver. Although this process' ?unction is trlvial and its 
code is verg shuT't, the solution is nevertheless non-intuitive 
and incurs some overhead in context switching. 

I? device processes were allowed to exchange signals then 
software administration uS process descriptors would be needed. 
In Wirth's implementation, however, device processes are 
scheduled entirelg bg the hardware. This is a verg efficient wag 
o~ handling device processes. The prioritg mechanism described 
above allows device processes to exchange signals at the cost o? 
linking and deiinking their descriptors ~rom the readg queue. 

Supervisorg Processes 

One uS the shortcomings o{ Moduia is that supervisorg 
processes, that is processes that schedule the execution of 
other processes, cannot be programmed. In ?act Wirth"s 
imp I eme-~-~ ~ _ ,,~_~on pi~ecludes a device process ?rum interrupting a 
regular process and giving the processor to another regular 
process. This is due to the ?act that the language lacks ang 
forceful means to switch the processor ~rom one regular process 
to another. The motivation ?or this is to do awag with mutual 
exclusion. 

in our implementation we have sacrificed free mutual 
exclusion around interface modules Sot a better control on 
processor allocation. Although this does not solve completelg 
the problem mentioned above (for a more complete solution see 
[6]), it enables the user to descriminate among regular 
processes through the use og priroties. Further, as indicated in 
[5], it makes the estimation o~ the execution time of programs 
more manageable. 

Our prioritg scheme has two shortcomings" 

Axiom o~ the wait primitive 

Wirth pointed out in [5] that " . . .  if a process would not 
immediatelg be resumed aster signal 1"eceipt, no guarantee could 
be given for the condition Ps [associated with the signal s] 
still to hold when at a later time the waiting process obtains 
the processor ... ". Our scheme does not guarantee the axioms 
governing signals sent bg regular or device processes. In 
Wirth's implementation this is onlg a problem when the signal is 
emitted bg a device process. Wirth gives in [5] two additional 
constraints that solve this problem. We found these 
~-estrictions to be too strong. In [7] Wirth mentions a simple 
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solution which consists o£ implementing wait(s) as" 

repeat wait(s) until Ps 

where s is the signal being sent, and Ps is its associeted 
condition. 

Larger Kernel 

The implementation oS m u t u a l  exclusion around inter£ace 
modules has cost us some (not too signi£icant) increase in the 
size o~ the kernel. Currentlg it is approxims'telg 250 words. 

Other changes and extensions are 

- A device process mag speci£g a r a n k  in its w a i t  statement 
- There is no lexical nesting o~ interSace modules. 

The implications o£ this construct in the original 
de£inition were unclear. 

- Records mau have variant parts (to bgpass strong tgping). 
- Structured constants can be defined. 
- A CASE statement mag contain an OTHERWISE clau~e. 
- Some standard procedures Sot run-time debugging have been 

added. 

4. Run-time debugging 

Two standard procedures called TRACE and OU'FTRACE are 
provided to enable the programmer to examine the values o{ 
certain variables and the status o~ signal queues. These 
procedures are part o£ the kernel, and can be invoked angwhere 
~rom a program. Optionallg, the compiler can per£orm arrag index 
checking and comparison o£ records. Other run-time checks are: 

- predecessor and successor o~ an enumeration value exists. 
- argument o? CHR is within range. 
- In an arrag assignment, the index range o? the source 

equals that o£ the destination. 

5. P e r f o r m a n c e  

The speed oS the ~irst phase (i. e. source to P-code 
translation) is roughlg 180 lines per minute. The 2nd phase 
(i. e. code generation) is slow, (approximatelg hal£ the speed o£ 
the £irst phase) and e~£orts are undertaken to improve its 
speed. In an experimental attempt to determine the speed o~ the 
entire compiler, we timed the compilation o.F a 578 line program. 
The translation phase took 3.09 minutes, while the code 
generation phase took 5.03 minutes. This corresponds to an 
overall speed o£ about 73 lines per minute. It must be pointed 
out that an important Sac tor in the slowness oS the compiler is 
that UCSD Pascal is interpreted, It runs about six times slower 
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than optimal. 

The execution speed oS PL Module programs is quite 
remsonable. We estimate that the compiler produces code which~ 
on average, is u~ithin a Sector o~ 3 times slower than optim~l~ 
Code Sot variable assignment ~nd evaluation o~ arithmetic 
expressions is verg nearlg optimal. 

The overhead associated with the sgnchro~ization operations 
is as ~oiiows~ 

WAIT 153 microseconds 
SEND 169 microseconds (* signal emitted to a process o~ 2"= 

prioritu *) 
DOiO 41 microseconds 

6. Conclusion 

Developing a Module compiler on a personal computer has 
been a valuable experience ~or us~ We learned a great deal on 
how to cope with memorg limitations. We also Sound out that 
Wirth was verg clever in the compromises he made in his 
implementation oe the Module kernel. It was verg diSeicult to 
relax some o'~ the restrictions he had without paging a price ~or 
them. We beleive that our extensions are worth the price we 
paged ~or them. 
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